organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5,5'-Bis[(1H-imidazol-1-yl)methyl]-2,2'bipyridine methanol disolvate

Suk-Hee Moon,^a Tae Ho Kim^b and Ki-Min Park^b*

^aDepartment of Food & Nutrition, Kyungnam College of Information and Technology, Busan 616-701, Republic of Korea, and ^bDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea

Correspondence e-mail: kmpark@gnu.ac.kr

Received 25 January 2011; accepted 28 January 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.144; data-to-parameter ratio = 16.7.

The title compound, $C_{18}H_{16}N_6 \cdot 2CH_3OH$, was prepared by the reaction of 5,5'-bis(bromomethyl)-2,2'-bipyridine with imidazole. The main molecule lies on an inversion center located at the mid-point of the C-C bond joining the two pyridine rings. The asymmetric unit therefore contains one half-molecule and one methanol solvent molecule. The dihedral angle between the pyridine and imidazole rings is $72.32(5)^{\circ}$. In the crystal, weak intermolecular $O-H\cdots N$, $C-H\cdots N$ and $C-H\cdots O$ hydrogen bonds contribute to the stabilization of the packing.

Related literature

For related syntheses, see: Sambrook et al. (2006); Zang et al. (2010). For a related structure, see: Zang et al. (2010). For reference bond lengths, see: Allen et al. (1987).

b = 14.7886 (12) Å	
c = 14.5378 (11) Å	
$\beta = 93.805 \ (2)^{\circ}$	
$V = 979.35 (14) \text{ Å}^3$	
Z = 2	

Data collection

Bruker APEXII CCD	5948 measured reflections
diffractometer	2136 independent reflections
Absorption correction: multi-scan	1619 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.053$
$T_{\min} = 0.970, \ T_{\max} = 0.991$	

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

 $0.35 \times 0.30 \times 0.10 \text{ mm}$

T = 173 K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	128 parameters
$wR(F^2) = 0.144$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
2136 reflections	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1A\cdots N3^{i}$	0.84	1.93	2.7662 (19)	171
C3−H3···O1	0.95	2.44	3.360 (2)	162
C8−H8· · ·N1 ⁱⁱ	0.95	2.57	3.422 (2)	149
C9−H9···O1 ⁱⁱⁱ	0.95	2.54	3.470 (2)	168
Symmetry codes: $x + 1$ $y = \frac{1}{2}$	(i) - <i>x</i> -	+1, -y+1, -z;	(ii) $x, -y +$	$\frac{1}{2}, z - \frac{1}{2};$ (iii)
-x + 1, y - 5, -z + 5				

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL.

This research was supported by the National Nuclear R&D Program through the National Research Foundation (NRF) funded by the Ministry of Education, Science and Technology (2010 - 0018586)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5094).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sambrook, M. R., Curiel, D., Hayes, E. J., Beer, P. D., Pope, S. J. A. & Faulkner, S. (2006). New J. Chem. 30, 1133-1136.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zang, H.-Y., Lan, Y.-Q., Yang, G.-S., Wang, X.-L., Shao, K.-Z., Xu, G.-J. & Su,

Z.-M. (2010). CrystEngComm, 12, 434-445.

supplementary materials

Acta Cryst. (2011). E67, o554 [doi:10.1107/S1600536811003643]

5,5'-Bis[(1H-imidazol-1-yl)methyl]-2,2'-bipyridine methanol disolvate

S.-H. Moon, T. H. Kim and K.-M. Park

Comment

The title compound was prepared to use as a multi-dentate ligand in the formation of metallosupramolecules in line with similar previously reported compounds (Sambrook *et al.*, 2006; Zang *et al.*, 2010).

In the title compound (Scheme 1, Fig. 1), two pyridine rings are coplanar because the title compound lies on a crystallographic inversion center. The dihedral angle between the pyridine and imidazole rings is 72.32 (5)°. All the bond lengths are within normal values (Allen *et al.*, 1987).

In the crystal structure, as shown in Fig. 2, weak intermolecular O–H…N, C–H…N and C–H…O hydrogen bonds are observed (Table 1). These intermolecular interactions may be contribute to the stabilization of the packing.

Experimental

A mixture of imidazole (0.120 g, 1.76 mmol) and potassium hydroxide (0.440 g, 7.84 mmol) in DMSO (10 ml) was stirred for 1 h. A DMSO solution (20 ml) of 5,5'-bis(bromomethyl)-2,2'-bipyridine (0.30 g, 0.88 mmol) was slowly added and the solution stirred for 6 h at room temperature. After water (100 ml) was added, the reaction mixture was extracted with chloroform (3×100 ml), washed with water and then dried over anhydrous MgSO₄. The solvent was removed to give the title compound in 63% yield. X-ray quality single crystals were obtained by slow evaporation of a solution in MeOH.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.95 Å, $U_{iso} = 1.2U_{eq}(C)$ for aromatic, d(C-H) = 0.84 Å, $U_{iso} = 1.5U_{eq}(C)$ for hydroxyl, d(C-H) = 0.98 Å, $U_{iso} = 1.5U_{eq}(C)$ for methyl protons.

Figures

Fig. 2. Crystal packing of the title compound with intermolecular O–H···N, C–H···N and C–H···O hydrogen bonds shown as dashed lines. H atoms not involved in intermolecular interactions have been omitted for clarity (Symmetry codes: i) -x + 1, -y + 1, -z; ii) x, -y + 1/2, z - 1/2; iii) -x + 1, y - 1/2, -z + 1/2; iv) x, -y + 1/2, z + 1/2; v) -x + 2, -y + 1, -z + 1).

5,5'-Bis[(1H-imidazol-1-yl)methyl]-2,2'-bipyridine methanol disolvate

F(000) = 404 $D_{\rm x} = 1.290 {\rm Mg m}^{-3}$

 $\theta = 2.8-28.2^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 173 KPlate, colorless $0.35 \times 0.30 \times 0.10 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 2441 reflections

Crystal data

$C_{18}H_{16}N_6 \cdot 2CH_4O$
$M_r = 380.45$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 4.5653 (4) Å
<i>b</i> = 14.7886 (12) Å
<i>c</i> = 14.5378 (11) Å
$\beta = 93.805 \ (2)^{\circ}$
$V = 979.35 (14) \text{ Å}^3$
Z = 2

Data collection

Bruker APEXII CCD diffractometer	2136 independent reflections
Radiation source: fine-focus sealed tube	1619 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.053$
φ and ω scans	$\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -4 \rightarrow 5$
$T_{\min} = 0.970, T_{\max} = 0.991$	$k = -18 \rightarrow 18$
5948 measured reflections	$l = -16 \rightarrow 18$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.144$	H-atom parameters constrained
<i>S</i> = 1.09	$w = 1/[\sigma^2(F_0^2) + (0.0772P)^2 + 0.1442P]$ where $P = (F_0^2 + 2F_c^2)/3$
2136 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
128 parameters	$\Delta \rho_{max} = 0.21 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.8022 (3)	0.40136 (8)	0.45831 (9)	0.0287 (3)
N2	0.4002 (3)	0.36956 (9)	0.17390 (9)	0.0281 (3)
N3	0.5877 (4)	0.36182 (11)	0.03818 (10)	0.0441 (4)
C1	0.5974 (4)	0.37871 (10)	0.39254 (11)	0.0301 (4)
H1	0.5329	0.3176	0.3901	0.036*
C2	0.4722 (3)	0.43832 (10)	0.32748 (10)	0.0254 (4)
C3	0.5628 (4)	0.52770 (11)	0.33297 (11)	0.0302 (4)
H3	0.4831	0.5710	0.2900	0.036*
C4	0.7704 (4)	0.55308 (10)	0.40161 (11)	0.0290 (4)
H4	0.8328	0.6143	0.4070	0.035*
C5	0.8868 (3)	0.48825 (9)	0.46263 (10)	0.0230 (3)
C6	0.2535 (4)	0.40622 (11)	0.25242 (11)	0.0309 (4)
H6B	0.1273	0.3589	0.2774	0.037*
H6A	0.1260	0.4573	0.2313	0.037*
C7	0.4342 (4)	0.41095 (12)	0.09281 (12)	0.0370 (4)
H7	0.3563	0.4689	0.0770	0.044*
C8	0.6558 (4)	0.28448 (12)	0.08778 (13)	0.0408 (5)
H8	0.7665	0.2353	0.0663	0.049*
C9	0.5437 (4)	0.28818 (11)	0.17102 (12)	0.0357 (4)
H9	0.5604	0.2436	0.2181	0.043*
01	0.2950 (3)	0.64181 (9)	0.14603 (8)	0.0371 (3)
H1A	0.3447	0.6360	0.0917	0.056*
C10	-0.0113 (4)	0.65194 (15)	0.14519 (15)	0.0484 (5)
H10B	-0.0687	0.6604	0.2084	0.073*
H10A	-0.1069	0.5977	0.1186	0.073*
H10C	-0.0717	0.7048	0.1080	0.073*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters (A ⁴
--

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0345 (8)	0.0239 (7)	0.0274 (7)	-0.0042 (5)	0.0002 (6)	0.0016 (5)
N2	0.0318 (8)	0.0278 (7)	0.0244 (7)	0.0002 (5)	0.0000 (6)	-0.0046 (5)
N3	0.0533 (10)	0.0507 (9)	0.0289 (8)	0.0131 (8)	0.0063 (7)	-0.0033 (7)
C1	0.0367 (9)	0.0246 (8)	0.0290 (8)	-0.0063 (6)	0.0016 (7)	-0.0023 (6)
C2	0.0250 (8)	0.0304 (8)	0.0215 (7)	0.0000 (6)	0.0065 (6)	-0.0043 (6)
C3	0.0337 (9)	0.0288 (8)	0.0279 (8)	0.0038 (7)	-0.0008 (7)	0.0034 (6)
C4	0.0351 (9)	0.0219 (8)	0.0296 (8)	-0.0011 (6)	-0.0009 (7)	0.0008 (6)

supplementary materials

C5	0.0256 (8)	0.0240 (7)	0.0201 (7)	0.0001 (6)	0.0065 (6)	-0.0015 (5)
C6	0.0267 (9)	0.0379 (9)	0.0283 (9)	-0.0004 (6)	0.0034 (7)	-0.0065 (7)
C7	0.0471 (11)	0.0361 (9)	0.0280 (9)	0.0088 (8)	0.0030 (8)	0.0007 (7)
C8	0.0483 (11)	0.0390 (10)	0.0345 (10)	0.0132 (8)	-0.0015 (8)	-0.0112 (8)
C9	0.0456 (11)	0.0273 (8)	0.0337 (9)	0.0037 (7)	-0.0014 (8)	-0.0043 (7)
01	0.0342 (7)	0.0493 (7)	0.0277 (6)	0.0074 (5)	0.0024 (5)	0.0017 (5)
C10	0.0350 (10)	0.0590 (13)	0.0515 (12)	0.0067 (9)	0.0053 (9)	-0.0012 (9)
Geometric paran	neters (Å, °)					
N1—C1		1.335 (2)	C4—H4	L	0.950	00
N1—C5		1.3420 (19)	C5—C5	i	1.490)(3)
N2—C7		1.346 (2)	С6—Не	δB	0.990	00
N2—C9		1.372 (2)	С6—Не	ÓA	0.990	00
N2—C6		1.4653 (19)	С7—Н7	1	0.950	00
N3—C7		1.313 (2)	C8—C9)	1.346	5 (3)
N3—C8		1.377 (2)	С8—Н8	8	0.950	00
C1—C2		1.388 (2)	С9—Н9)	0.950	00
C1—H1		0.9500	01—C1	0	1.406 (2)	
C2—C3		1.386 (2)	O1—H1	A	0.840	00
C2—C6		1.506 (2)	C10—H	[10B	0.980	00
C3—C4		1.382 (2)	C10—H	[10A	0.980	00
С3—Н3		0.9500	C10—H	110C	0.980	00
C4—C5		1.388 (2)				
C1—N1—C5		117.36 (14)	N2—C6	—Н6В	109.3	;
C7—N2—C9		106.80 (14)	C2—C6	—Н6В	109.3	;
C7—N2—C6		126.80 (14)	N2—C6	6—Н6А	109.3	;
C9—N2—C6		126.30 (14)	C2—C6	H6A	109.3	;
C7—N3—C8		104.71 (15)	H6B—0	С6—Н6А	108.0)
N1-C1-C2		124.46 (14)) N3—C7—N2 112.04 (1		94 (16)	
N1-C1-H1		117.8	N3—C7—H7 124.0)	
C2—C1—H1		117.8	N2—C7—H7 124.0)	
C3—C2—C1		117.31 (15)	C9—C8	—N3	110.5	5 (15)
C3—C2—C6		121.56 (15)	C9—C8	H8	124.7	7
C1—C2—C6		121.11 (14)	N3—C8	3—H8	124.7	7
C4—C3—C2		119.24 (15)	C8—C9	—N2	105.8	39 (15)
C4—C3—H3		120.4	C8—C9	—H9	127.1	
С2—С3—Н3		120.4	N2—C9	9—H9	127.1	
C3—C4—C5		119.28 (14)	C10—C	DI—HIA	109.5	
C3-C4-H4		120.4	01_01	0—H10B	109.5) -
C5-C4-H4		120.4		0—H10A	109.5	
NIC5C4		122.32 (14)	HIUB-	-CIU—HIUA	109.5	, -
NI-C5-C5 ¹		110.18 (10)		GIA HIGG	109.5	
C4-C5-C5'		121.50 (16)	HIUB-	-CIU-HIUC	109.5	
N2—C6—C2	_	111.44 (13)	H10A—	-C10—H10C	109.5)
C5—N1—C1—C2	2	1.6 (2)	C9—N2	2—C6—C2	73.5	(2)
N1—C1—C2—C3	3	-1.5 (2)	C3—C2		94.07	7 (17)
N1-C1-C2-C	6	176.79 (15)	C1—C2	-C6-N2	-84.1	1 (18)

supplementary materials

C1—C2—C3—C4	0.1 (2)	C8—N3—C7—N2	-0.1 (2)
C6—C2—C3—C4	-178.13 (14)	C9—N2—C7—N3	0.3 (2)
C2—C3—C4—C5	1.0 (2)	C6—N2—C7—N3	177.02 (15)
C1—N1—C5—C4	-0.3 (2)	C7—N3—C8—C9	-0.1 (2)
C1—N1—C5—C5 ⁱ	179.33 (15)	N3—C8—C9—N2	0.3 (2)
C3—C4—C5—N1	-0.9 (2)	C7—N2—C9—C8	-0.3 (2)
C3—C4—C5—C5 ⁱ	179.44 (16)	C6—N2—C9—C8	-177.10 (16)
C7—N2—C6—C2	-102.61 (19)		

Symmetry codes: (i) -x+2, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
O1—H1A···N3 ⁱⁱ	0.84	1.93	2.7662 (19)	171
С3—Н3…О1	0.95	2.44	3.360 (2)	162
C8—H8…N1 ⁱⁱⁱ	0.95	2.57	3.422 (2)	149
C9—H9···O1 ^{iv}	0.95	2.54	3.470 (2)	168

Symmetry codes: (ii) -x+1, -y+1, -z; (iii) x, -y+1/2, z-1/2; (iv) -x+1, y-1/2, -z+1/2.

Fig. 2